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Abstract
Sho1 is an important membrane sensor upstream of the HOG-MAPK signaling pathway, which plays critical roles in osmotic
pressure response, growth, and virulence in fungi. Here, a Sho1 homolog (MaSho1), containing four transmembrane domains
and one Src homology (SH3) domain, was characterized in Metarhizium acridum, a fungal pathogen of locusts. Targeted gene
disruption ofMaSho1 impaired cell wall integrity, virulence, and tolerances to UV-B and oxidative stresses, while none of them
was affected when the SH3 domain was deleted. Intriguingly, disruption ofMaSho1 significantly increased conidial yield, which
was not affected in the SH3 domain mutant. Furthermore, it was found that deletion ofMaSho1 led to microcycle conidiation of
M. acridum on the normal conidiation medium. Deletion ofMaSho1 significantly shortened the hyphal cells but had no effect on
conidial germination. Digital gene expression profiling during conidiation indicated that differential expression of genes was
associated with mycelial development, cell division, and differentiation between the wild type and the MaSho1 mutant. These
data suggested that disruption ofMaSho1 shifted the conidiation pattern by altering the transcription of genes to inhibit mycelial
growth, thereby promoting the conidiation of M. acridum.

Keywords Metarhizium acridum . HOG-MAPKpathway . Sho1 . Conidiation pattern .Microcycle conidiation

Introduction

In most filamentous fungi, two kinds of asexual conidiation
patterns, normal conidiation and microcycle conidiation, are
found (Hanlin 1994; Jung et al. 2014). Normal conidiation is a

basic part in the life cycle of the fungus, which sporulates after
proper mycelial growth (Anderson and Smith 1971). During
microcycle conidiation, however, conidia can bypass or short-
en mycelial development and directly generate conidia (Bosch
and Yantorno 1999; Lapaire and Dunkle 2003; Ahearm et al.
2007; Zhang et al. 2010; Pintye et al. 2011). Many environ-
mental stresses can shift the conidiation pattern (Anderson and
Smith 1971; Hanlin 1994; Jung et al. 2014; Wang et al. 2016).
Metarhizium acridum, a locust-specific fungal pathogen, also
has two conidiation patterns, and microcycle conidiation has
some advantages in biocontrol potential compared with nor-
mal conidiation (Zhang et al. 2010). Therefore, exploring the
underlying molecular causing conidiation pattern shift in
M. acridum is helpful to improve the conidiation capacity
and insecticidal efficiency.

The HOG-MAPK (high osmolarity glycerol mitogen-
activated protein kinase) signaling pathway plays important
roles in fungal adaptation to the changes of external environ-
ments (temperature, pH, and hyperosmotic stress, etc.) and
participates in governing the cell growth, cell wall integrity,
and invasive growth (Hohmann 2009; Chen and Thorner
2007; Saito and Posas 2012). In Saccharomyces cerevisiae,
the HOG pathway comprises the two upstream branches of
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pattern, suggesting that the functions of MaSho1 might be
independent of MaHog1 during the conidiation pattern shift.
These mechanisms need to be clarified in future
investigations.

Two conidiation patterns, normal conidiation and
microcycle conidiation, are found in most filamentous fungi
(Hanlin 1994). The two patterns are interconvertible under
some specific conditions (Anderson and Smith 1971; Bosch
and Yantorno 1999;Wang et al. 2016). Compared with normal
conidiation, microcycle conidiation typically bypassed or sim-
plified the hyphal growth (Jung et al. 2014). Thus, genes in-
volved in cell polarity and hyphal growth are crucial for
conidiation pattern shift. In A. fumigatus, deletion of Sho1
led to decreased Spitzenkörper body size and affected fungal
hyphal morphogenesis (Yang et al. 2011), suggesting the hy-
phal growth reduction in ΔMaSho1 may result from a cell
polarity defect. Consistently, our DGE data showed that a
putative UDP-glucose 4-epimerase gene (MAC_08917),
which is required for hyphal growth in A. nidulans (El-
Ganiny et al. 2010), was remarkably downregulated in
ΔMaSho1. A gene for cation-transporting ATPase 4
(MAC_09130), which plays an important role in cell polarity
and division (Façanha et al. 2002), was also significantly
downregulated when MaSho1 was deleted. In addition, a
downregulated DEG inΔMaSho1, for a stomatin-like protein
(MAC_03596), was crucial for hyphal polarized growth and

morphology in A. nidulans (Takeshita et al. 2012). A glucose-
methanol-choline oxidoreductase gene (MAC_02934), which
was involved in hyphal development of A. nidulans and asso-
ciated with FluG sporulation signaling pathways (Etxebeste
et al. 2012), was significantly upregulated in ΔMaSho1. In
yeast, cell membrane proteins and cell wall proteins are criti-
cal during cell division (Tiwari et al. 2016; Sethi et al. 2016).
In our DGE data, genes encoding these proteins were down-
regulated in ΔMaSho1, including genes for a putative cell
surface protein (MAC_08122), exo-1,3-β-D-glucanase
(MAC_08796) , and in teg ra l membrane p ro te in
(MAC_06062). Moreover, a gene for PRO1A C6 Zinc-
finger protein (MAC_00376) playing important roles in co-
nidial morphology and conidial yield (Masloff et al. 2002)
was upregulated in ΔMaSho1.

In summary, MaSho1 makes contributions to stress toler-
ances and virulence ofM. acridum. Interestingly, theMaSho1
deletion increases the conidial yield due to shifting the
conidiation pattern of M. acridum, which is valuable for in-
dustrial production of mycopesticides.MaSho1 and the DEGs
in ΔMaSho1 will be potentially useful to enhance the
conidiation capacity of M. acridum.
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A B S T R A C T   

O-glycosylation is a very important post-translational modification of protein and involved in many cell pro-
cesses in fungi. There exist three protein O-manosyltransferanse genes (MaPmt1, MaPmt2, MaPmt4) in Meta-
rhizium acridum based on sequence homology. Here, MaPmt1, a gene for Pmt1 O-manosyltransferanse in 
M. acridum, was characterized and functionally analyzed through targeted gene disruption and complementation 
methods. Deletion of MaPmt1 had no effect on conidial germination, but slightly increased the conidial yield and 
significantly impaired fungal tolerances to UV-B radiation and wet-heat. Deletion of MaPmt1 made the fungus 
become more sensitive to cell wall disturbing agents and exhibit a thinner cell wall with changed components. 
Insect bioassays showed that disruption of MaPmt1 attenuated the fungal virulence significantly by topical 
inoculation but not by injection, indicating that MaPmt1 is required for penetration during the infection of 
M. acridum. Interestingly, deletion of MaPmt1 did not affect appressorium formation but significantly decreased 
appressorium turgor pressure. Moreover, the decreased virulence of MaPmt1 disruptant is mainly due to the 
reduced appressorium turgor pressure, which may be resulted from the declined glycerol concentration, com-
bined with the weakened cell wall that could not hold the normal appressorium turgor pressure to penetrate the 
host cuticle.   

1. Introduction 

Entomopathogenic fungi are environmentally friendly and have 
attracted much attention as an alternative to chemical insecticides 
(Glare et al., 2012) and can infect their insect hosts directly through the 
exoskeleton or cuticle (Wang and Wang, 2017). The infection process of 
fungi mainly involves the following steps: first, the fungi attach to host 
insect cuticle, followed by germination of conidia and germ tube for-
mation, then developed into appressoria, known as the penetration 
structures (Holder and Keyhani, 2005). The process of fungi to penetrate 
the insect cuticle or skeleton mainly related to some cuticle degrading 
enzymes and turgor pressure (Freimoser et al., 2005; St Leger et al., 
1992). To date, however, the molecular mechanism of infection of 
entomopathogenic fungi have not been fully elucidated. Thus, further 
understanding the pathogenesis of insect pathogenic fungi is helpful to 
tap their biological control potential. 

Protein O-mannosylation, a widespread post-translational modifi-
cation, is evolutionarily conserved from bacteria to fungi, as well as in 
human (Lommel and Strahl, 2009) and initiated by a family of protein O- 
mannosyltransferases (PMTs) (Abu-Qarn et al., 2008; Strahl-Bolsinger 
et al., 1993), and plays important roles in regulating function and 
secretion of proteins (Bourdineaud et al., 1998). Over the past decades, 
many functions of fungal O-mannosylation have been elucidated, i.e. 
cell wall integrity and stability, cell morphology, as well as protein 
sorting and localization (Hirayama et al., 2008; Lommel and Strahl, 
2009). In Saccharomyces cerevisiae, seven members (ScPmt1-7) are 
included in PMT family which is divided into three subfamilies ac-
cording to their homology: the Pmt1 subfamily including Pmt1, Pmt 5 
and Pmt7, the Pmt2 subfamily including Pmt2, Pmt3 and Pmt6 and the 
Pmt4 subfamily containing a member of Pmt4 (Gentzsch and Tanner, 
1997; Willer et al., 2002). In the human fungal pathogen Candida albi-
cans, the PMT family includes five isoforms (Prill et al., 2005). But in 

Abbreviations: CR, Congo red; CFW, calcofluor white; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; ORF, open reading frame; TEM, transmission electron 
microscope. 
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cell wall that can not bear a huge pressure in M. acridum. 

5. Conclusions 

As discussed above, MaPmt1 was not only involved in stress toler-
ances and cell wall integrity, but also contributed to virulence in 
M. acridum. Notably, MaPmt1 disruption decreased the appressorium 
turgor pressure by impairing the glycerol synthesis and/or changing the 
cell wall structure and compotents in M. acridum. 
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Fig. 5. Appressorium formation of fungal strains on locust wings. (A) Germination rates of conidia cultivated on locust wings for 12 h, 16 h, 20 h and 24 h. (B) 
Appressorium formation rates of fungal strains at 12 h, 16 h, 20 h and 24 h. (C) Collapsed appressoria in PEG-8000 with different concentrations of fungal strains. (D) 
The LD50s of PEG-8000 to make 50% of appressoria collapsed. (E) Lipid droplets stained with Nile red in appressorium and mycelia. Error bars indicated standard 
deviations of biological triplicates. Bar = 10 μm. A, B: significant differences at P < 0.01. a, b: significant differences at P < 0.05. The same letters indicated no 
statistical significance (P > 0.05). 
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Abstract
PacC is a pH-responsive transcription factor gene highly expressed at alkaline pH and plays distinct roles in environmental 
fitness, conidiation and virulence of different fungi. Here, we show biological functions of orthologous MaPacC in the 
locust-specific fungal pathogen Metarhizium acridum. Disruption of MapacC slowed down the fungal growth only under 
alkaline conditions. Intriguingly, the fungal thermotolerance was enhanced by the MapacC deletion, accompanied by tran-
scriptional upregulation of some heat shock-responsive genes. The disruptant suffered a reduction in conidial yield and a 
change in conidial surface structure, but showed little change in cell wall integrity. The virulence of the disruptant against a 
locust species was markedly attenuated due to delayed appressorium formation, repressed expression of some insect cuticle 
hydrolases and slowed growth in locust hemolymph. The phenoloxidase activity and nodules of the locusts infected by the 
disruptant were also boosted. All of these phenotypic changes were restored by targeted gene complementation. Our results 
indicate that MaPacC acts a negative regulator of thermotolerance and contributes to the virulence of M. acridum by an 
involvement in hyphal penetration through insect cuticle and evasion from insect immunity.

Keywords Metarhizium acridum · PacC · Thermotolerance · Virulence · Insect immune evasion · Conidial surface 
structures

Introduction

Entomopathogenic fungi can infect host through cuticular 
penetration (Clarkson and Charnley 1996) and serve as 
biological control agents of arthropod pests (Lord 2005; 
Peng et al. 2008). Wide application of mycoinsecticides is 
restrained due to their sensitivity to environmental stresses 
and slower killing action (Rangel et al. 2005; Fernandes 
et al. 2012, 2015). Advanced fungal biotechnology has pro-
moted genetic improvement of fungal virulence and/or stress 
tolerance (Lovett and St Leger 2018). Thus, elucidation of 
the signaling network involved in stress tolerance and viru-
lence will facilitate fungal improvement and commercial 
development.

As a zinc finger transcription factor, PacC/Rim101 plays 
critical roles in fungal adaptation to broad ambient pH con-
ditions and hosts (Peñalva et al. 2008; Cornet and Gaillar-
din 2014). Besides typical zinc finger  C2H2 domains, PacC 
protein also features a nuclear localization signal and three 
conserved domains (region A, B and C) (Arst and Peñalva 
2003).  OH− can activate the Pal pH signaling pathway to 
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of B. bassiana (Zhu et al. 2016). In this study, conidial tol-
erance to high temperature was significantly enhanced by 
the disruption of MapacC in M. acridum, accompanied by 
up-regulated expression of several heat-shock responsive 
genes, which encode heat shock proteins (HSPs) and cata-
lase or are involved in ubiquitin accumulation or ESCRT 
complexes and hence function in protecting fungal cell from 
heat stress (Parsell and Lindquist 1993; Loser and Weltring 
1998; Noventa-Jordão et al. 1999; Wang et al. 2014; Brune 
et al. 2019). Therefore, our results indicate that MaPacC 
serves as a negative regulator of conidial thermotolerance 
in M. acridum.

In M. robertsii, virulence was attenuated by the dele-
tion of pacC, which impaired the fungal capability of insect 
cuticle penetration and host immunity evasion (Huang et al. 
2015). Our ΔMapacC mutant also showed attenuated viru-
lence due to delayed appressorium formation and reduced 
expression levels of Pr1A and Chit1 critical for insect cuticle 
hydrolysis (St Leger et al. 1996; Fang et al. 2005). Moreo-
ver, development of hyphal bodies in locust hemolymph 
was delayed in ΔMapacC than in control strains likely 
due to suppression by host immune defense, which fungal 
cells must overcome to propagate by yeast-like budding in 
host hemocoel (Cerenius and Söderhäll 2004; Wang and St 
Leger 2006). In this study, the locusts infected by ΔMapacC 
displayed increased PO activity and formed more nodules 
implicating an involvement of MapacC in the fungal eva-
sion from locust immunity defense. Some fungal cell-wall 
components are often targeted by host immune system (Gow 
et al. 2012). In this study, reduced conidial hydrophobicity 
and altered distributions of carbohydrates on conidial sur-
face resulted from the MapacC deletion. Therefore, locust 
immune response triggered by the infection of ΔMapacC 
could be attributable to altered cell-wall composition, par-
ticularly the increased distribution of β-1,3-glucan a cell-
wall component readily recognized by insect host immune 
system (Ochiai and Ashida 2000).

Altogether, MapacC contributes to conidiation capacity 
and virulence, but negatively regulates thermotolerance of 
M. acridum. Conidial yield, thermotolerance and virulence 
are important phenotypes associated with fungal biocontrol 
potential. Therefore, MapacC may act as a candidate gene for 
genetic improvement of the fungal potential against locusts.
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Abstract
Reversible phosphorylation of proteins regulated by protein kinases and phosphatases mediate multiple biological events in 
eukaryotes. In this study, a dual-specificity cell division cycle 14 phosphatase, MaCdc14, was functionally characterized in 
Metarhizium acridum. Deletion of MaCdc14 decreased branch numbers, affected septum formation and resulted in multiple 
nuclei in each hyphal compartment, indicating nuclear division and cytokinesis defects. The spore production capacity was 
severely impaired with decreased conidial yield and delayed conidiation in MaCdc14-deletion mutant (ΔMaCdc14). The 
transcription levels of conidiation-related genes were significantly changed after MaCdc14 inactivation. The morphology 
of conidia was uneven in size and the germination rate of conidia was increased in ΔMaCdc14. In addition, ΔMaCdc14 
displayed significantly enhanced conidial tolerance to ultraviolet (UV) irradiation but had no significant effect on the ther-
motolerance, the sensitivities to cell wall damage reagents, osmotic and oxidative stresses, and virulence compared to the 
wild-type strain and complementary transformant. Furthermore, the pigmentation of ΔMaCdc14 was increased by the 
upregulated expression of melanin synthesis-related genes, which may result in the enhanced UV-B tolerance of ΔMaCdc14. 
In summary, MaCdc14 negatively regulated UV-B tolerance by mediating the transcription of melanin synthesis-related 
genes, contributed to conidiation by regulating the expression levels of conidiation-related genes and also played important 
roles in cytokinesis and morphogenesis in Metarhizium acridum.

Keywords Metarhizium acridum · Cdc14 phosphatase · Conidiation · UV-B tolerance · Melanin

Introduction

Metarhizium spp. as entomopathogenic fungi have been 
extensively studied because of their safety and environmen-
tal friendliness (Aw and Hue 2017). Metarhizium acridum, 
a locust-specific pathogen, has been used as a model fungus 
to study issues in ecology, evolution and the mechanisms 
of speciation, and has shown great potential in biological 
control (Roberts and St Leger 2004; Aw and Hue 2017). 
Such biological agents have been widely used in Australia 
(Hunter et al. 1999), Africa (Niassy et al. 2011) and Asia 
(Peng et al. 2008). However, ultraviolet (UV) irradiation 
(UV-A and UV-B) from sunlight usually leads to DNA dam-
age, mutation and protein denaturation, and it also damages 
RNA, ribosome, biofilms and membrane lipids (Griffiths 
et al. 1998; Yao et al. 2010; Braga et al. 2015). Vulnera-
bility to environmental disturbances and poor efficacy are 
grave impediments for the application of biological agents in 
farmland (Rangel et al. 2015; Fernandes et al. 2015). Thus, 
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Abstract
In eukaryotic cells, protein O-glycosylation is an essential protein modification. Analysis of the Metarhizium acridum 
genome database revealed a total of three O-glycoside mannosyltransferase homologs (Pmt1, Pmt2 and Pmt4), closely 
related to Saccharomyces cerevisiae Pmt1, Pmt2, and Pmt4. In this study, the functions of MaPmt4, encoding a protein 
O-mannosyltransferase in M. acridum, were characterized using disruption and complementation strategies. Disruption of 
MaPmt4 delayed the conidial germination and reduced the fungal tolerances to heat shock and UV-B irradiation, but did not 
affect conidial yield. Inactivation of MaPmt4 displayed increased sensitivity to cell wall-perturbing agents, formed thinner 
cell walls, and changed composition of fungal cell wall, demonstrating that MaPmt4 was also important to maintain fungal 
cell wall integrity. Bioassays by topical inoculation and intrahemocoel injection showed that the MaPmt4 deletion mutant 
exhibited greatly reduced virulence. The subsequent examination revealed that the inactivation of MaPmt4 impaired appres-
sorium formation, decreased fungal growth in locust hemolymph in vitro, and boosted insect immune responses, the latter 
in part potentially owing to the changes in conidial surface structures, and thus attenuated the virulence of MaPmt4 deletion 
mutant. Furthermore, the results of comparative proteomics showed that MaPmt4 played important roles in fungal cell wall 
integrity, stress tolerances, and virulence via broad genetic pathways.

Keywords Metarhizium acridum · Protein O-mannosyltransferase (PMT) · MaPmt4 · Virulence · Cell wall · Proteomic 
analysis

Introduction

O-mannosylation is an important post-translational modifi-
cation of protein and plays important roles in improving the 
stability and solubility of various proteins (Goto 2007). In 
eukaryotes, the first step of O-mannosylation is that the addi-
tion of a mannose residue on secreted acceptor proteins at 
serine/threonine residues is catalyzed by protein O-manno-
syltransferases (PMTs) on the membrane of the endoplasmic 
reticulum (Lommel and Strahl 2009; Loibl and Strahl 2013). 
O-mannosylation is conserved from bacteria to humans, but 
not found in algae, plants and protozoa. The physiological 
roles of O-mannosylation have been characterized in certain 
bacterial genera (Liu et al. 2013; Katja et al. 2017), and 
some fungal species (Gentzsch and Tanner 1997; Strahl-
Bolsinger et al. 1999; Oka et al. 2004; Wang et al. 2014; 
Shimizu et al. 2014; Pan et al. 2018; Le et al. 2018).

In Saccharomyces cerevisiae, seven Pmt family mem-
bers (ScPmt1p–ScPmt7p) are present and subdivided into 
the Pmt1, Pmt2, and Pmt4 subfamilies by phylogenetic 
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Thus, the weakened cell wall and the changes of conidial 
surface structure in ΔMaPmt4 would make the fungus sus-
ceptible to host defenses. The disruption of MaPmt4 also 
leads to the reduction of fungal virulence because of the 
decline in appressorium formation, the decrease of fungal 
growth in hemolymph, and the impairments of fungal eva-
sion from insect immune responses owing to the alteration 
in conidial surface structures.

In summary, MaPmt4 is crucial for M. acridum cell wall 
integrity, stress tolerances and virulence. Stress tolerances 
and virulence are important considerations in entomopatho-
genic fungi to control insect pests effectively. Thus, MaPmt4 
and differential proteins may be some potential candidates 
for the improvement of mycopesticides.
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Abstract

Chitin is an important component of the fungal cell wall with a family of chitin synthases
mediating its synthesis. Here, we report on the genetic characterization of the full suite of
seven chitin synthases (MaChsI-VII) identified in the insect pathogenic fungus,Metarhizium
acridum. Aberrant distribution of chitin was most evident in targeted gene knockouts of
MaChsV andMaChsVII. Mutants ofMaChsI,MaChsIII,MaChsIV showed delayed conidial
germination, whereas ΔMaChsII and ΔMaChsVmutants germinated more rapidly when
compared to the wild-type parent. AllMaChs genes impacted conidial yield, but differentially
affected stress tolerances. Inactivation ofMaChsIII,MaChsV,MaChsVII resulted in cell wall
fragility, and ΔMaChsV and ΔMaChsVIImutants showed high sensitivity to Congo red and
calcofluor white, suggesting that the three genes are required for cell wall integrity. In addi-
tion, ΔMaChsIII and ΔMaChsVIImutants showed the highest sensitivities to heat and UV-B
stress. Three of seven chitin synthase genes,MaChsIII,MaChsV,MaChsVII, were found to
contribute to fungal virulence. Compared with the wild-type strain, ΔMaChsIII and ΔMaChsV
mutants were reduced in virulence by topical inoculation, while the ΔMaChsVIImutant
showedmore severe virulence defects. Inactivation ofMaChsIII,MaChsV, orMaChsVII
impaired appressorium formation, affected growth of in insecta produced hyphal bodies,
and altered the surface properties of conidia and hyphal bodies, resulting in defects in the
ability of the mutant strains to evade insect immune responses. These data provide impor-
tant links between the physiology of the cell wall and the ability of the fungus to parasitize
insects and reveal differential functional consequences of the chitin synthase family inM.
acridum growth, stress tolerances, cell wall integrity and virulence.
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Abstract
Conidiation capacity and conidial quality are very important for the production and application of mycopesticides. Most fila-
mentous ascomycetous fungi have two distinct patterns of conidiation. Conidiation through microcycle conidiation proceeds to
more rapidly achieve a maximum of conidial yield than normal conidiation and hence is of greater merit for exploitation in mass
production of fungal insect pathogens, such as Metarhizium acridum. In this study, the mechanism underlying the conidiation
pattern shift inM. acridumwas explored by characterization of the fungal homeobox geneMaH1. MaH1 was evidently localized
to the nuclei of hyphae and transcriptionally expressed at a maximal level when conidiation began. Intriguingly, deletion of
MaH1 in M. acridum resulted in a shift of normal conidiation to microcycle conidiation on one-quarter strength Sabouraud’s
dextrose agar medium, and hence accelerated conidiation and increased conidial yield. In the deletion mutant, moreover, conidia
became larger in size and hyphae cells were shorter in length while conidial virulence and stress tolerance were not altered. As
revealed by digital gene expression profiling,MaH1 controlled the shift of conidiation patterns bymediating transcription of a set
of genes related to hyphal growth, cell differentiation, conidiation, and some important signaling pathways. These findings
indicate that MaH1 and its downstream genes can be exploited to increase the conidial yield for more efficient production of
mycopesticides.

Keywords Metarhizium acridum . Homeobox gene . Transcription factor .Microcycle conidiation . Conidiation pattern shift

Introduction

Entomopathogenic fungi are biological control agents of in-
sect pests (Charnley and Collins 2007). These fungi infect
hosts by directly penetrating their external cuticle, including
those of insects and other arthropods such as ticks and mites
(Federici et al. 2008; Lacey et al. 2015).Metarhizium spp. are
insect mycopathogens that have a high potential for pest con-
trol and are safe for humans and other non-target organisms
(St Leger et al. 1996; Lacey et al. 2001). However, poor effi-
cacy and high production cost have retarded their widespread
application as chemical insecticides (Lacey et al. 2001; Hajek
et al. 2007). Formulated conidia are infective cells often ap-
plied for insect pest control (Nielsen 1992; Papagianni 2004).
Thus, conidiation capacity and conidial quality are important
properties that determine the efficiency of mass production
and the application of mycopesticides.

Most filamentous ascomycetous fungi undergo normal
conidiation and microcycle conidiation (Hanlin 1994).
Normal conidiation is a common reproductive mode (Park

Pingping Gao and Muchun Li contributed equally to this work.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00253-018-9558-4) contains supplementary
material, which is available to authorized users.

* Kai Jin
jinkai@cqu.edu.cn

* Yuxian Xia
yuxianxia@cqu.edu.cn

1 Genetic Engineering Research Center, School of Life Sciences,
Chongqing University, Chongqing 401331, People’s Republic of
China

2 Chongqing Engineering Research Center for Fungal Insecticide,
Chongqing 401331, People’s Republic of China

3 Key Laboratory of Gene Function and Regulation Technologies
under Chongqing Municipal Education Commission,
Chongqing 401331, People’s Republic of China

Applied Microbiology and Biotechnology (2019) 103:2251–2262
https://doi.org/10.1007/s00253-018-9558-4

APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY

http://crossmark.crossref.org/dialog/?doi=10.1007/s00253-018-9558-4&domain=pdf
http://orcid.org/0000-0001-5551-703X
https://doi.org/10.1007/s00253-018-9558-4
mailto:jinkai@cqu.edu.cn
mailto:yuxianxia@cqu.edu.cn
金凯
高亮



which are all related to conidiation and hyphal development
(Traag et al. 2004; Leuthner et al. 2005; El-Ganiny et al.
2010; Ulrych et al. 2013). The negative regulation of
microcycle conidiation by MaH1 observed in the WT is
likely achieved through expression of these genes which
are found to be repressed when MaH1 lost function in
M. acridum. In addition, KEGG analysis indicated that
the WD-repeat containing protein slp1 is involved in mei-
osis and the cell cycle, and putative cephalosporin C regu-
lator 1 is involved in cell cycle. We speculate that MaH1
may regulate genes related to meiosis, cell cycle, conidial
formation, and hyphal growth-related genes to affect co-
nidial size and length of hyphal cells.

In Schizosaccharomyces pombe, cell membrane proteins
as well as diaphragm wall and actin proteins are important
factors in cell division (Sethi et al. 2016; Green et al.
2017). In the present study, these protein-coding genes
were differentially expressed in the absence of MaH1, in-
cluding those encoding DUF914 domain membrane pro-
tein, inner membrane magnesium transporter MRS2 pre-
cursor, and cell integrity proteins. Changes in cell polarity
and morphology may be also important for the shift of
conidiation pattern inM. acridum, although the mechanism
underlying the shift remains poorly understood. In
M. acridum, genes involved in the conidiation pattern shift
have been identified by RNA-seq (Wang et al. 2016), in-
cluding those downregulated during normal conidiation of
ΔMaH1. These genes encode UDP-glucose 4-epimerase,
which is involved in hyphal morphogenesis and conidiation
(El-Ganiny et al. 2010), GABA permease, which is essential
for normal carbon metabolism (Michaeli et al. 2011), putative
hydantoinase/oxoprolinase, and hypothetical proteins
(MAC_03248 and MAC_06604).

Taken together, our results demonstrate that disruption of
MaH1 accelerated conidiation and increased conidial yield
through a shift to the microcycle conidiation pattern as a result
of reduced expression of genes which exhibit high expression
levels during normal conidiation.MaH1 and associated genes
may be candidate genes to be exploited for improved produc-
tion efficiency of mycopesticides. Further elucidation of the
functions of the DEGs identified in this study may be helpful
for uncovering the molecular mechanisms underlying the
conidiation pattern shift in M. acridum and other entomo-
pathogenic fungi.
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Abstract
The Ser/Thr protein phosphatase Ppt1 (yeast)/PP5 (humans) has been implicated in signal transduction–mediated
growth and differentiation, DNA damage/repair, cell cycle progression, and heat shock responses. Little, however,
is known concerning the functions of Ppt1/PP5 in filamentous fungi. In this study, the Ppt1 gene MaPpt1 was
characterized in the insect pathogenic fungus, Metarhizium acridum. The MaPpt1 protein features a three-tandem
tetratricopeptide repeat (TPR) domain and a peptidyl-prolyl cis-trans isomerase-like (PP2Ac) domain. Subcellular
localization using an MaPpt1::eGFP fusion protein revealed that MaPpt1 was localized in the cytoplasm of spores,
but gathered at the septa in growing hyphae. Targeted gene inactivation of MaPpt1 in M. acridum resulted in
unexpected reprogramming of normal aerial conidiation to microcycle conidiation. Although overall vegetative
growth was unaffected, a significant increase in conidial yield was noted in ΔMaPpt1. Stress-responsive phenotypes
and virulence were largely unaffected in ΔMaPpt1. Exceptionally, ΔMaPpt1 displayed increased UV tolerance
compared to wild type. Digital gene expression data revealed that MaPpt1 mediates transcription of sets of genes
involved in conidiation, polarized growth, cell cycle, cell proliferation, DNA replication and repair, and some
important signaling pathways. These data indicate a unique role for Ppt1 in filamentous fungal development and
differentiation.

Keywords Protein phosphatase Ppt1 .Metarhizium acridum . Microcycle conidiation . UV tolerance

Introduction

The competing states of phosphorylation/dephosphorylation
of serine and threonine residues in a wide range of proteins
mediate diverse and sometimes essential cellular processes
and rely upon the activities of protein kinases and phospha-
tases. In eukaryotes, the phosphoprotein phosphatases (PPP)
family members are evolutionarily highly conserved proteins
and fall into several subfamilies, including PP1, PP2A, PP2B,
PP4, PP5, PP6, and PP7 (Barford 1996; Kennelly 2001).
Among those, the PP5 (Ppt1 in yeast) subfamily contains as
a single member throughout the Eukaryota (de la Fuente van
Bentem et al. 2003; Shi 2009) and structurally features two
domains not found in other PPP family: one is a peptidyl-
prolyl cis-trans isomerase-like (PP2Ac) domain and another
is a three-tandem tetratricopeptide repeat (TPR) domain which
acts as a protein-protein interaction motif at the N-terminus
(Das et al. 1998). PP5 first characterized in mammalian
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negative molecular feedback loop involving the rhythmic
levels of frequency clock protein (Guo et al. 2010;
Diernfellner and Schafmeier 2011). Mutation of the PKA-
dependent phosphorylation sites on the phosphoprotein
RCM-1 results in WC-independent transcription of frequency
clock protein and impaired clock function in Neurospora (Liu
et al. 2015). Frequency clock protein phosphorylations occur
in the majority of the proteins involved and phosphorylation
status influences their stability, activity, and subcellular local-
ization (Diernfellner and Schafmeier 2011). DNA replication
licensing factors, including mcm2, mcm5, and mcm7, were all
upregulated inΔMaPpt1-6 days. The minichromosomemain-
tenance (MCM) complex is a putative DNA helicase complex
that facilitates the initiation of DNA replication (Yoshida and
Inoue 2003). MCM plays a critical role in DNA replication
initiation and cell proliferation of eukaryotic cells (Wei et al.
2013). OxdC was present in the periplasm and remained firm-
ly bound to cell-wall materials in Collybia velutipes (Azam
et al. 2001). As demonstrated in S. cerevisiae, incorporation of
cell wall protein in fungi can be completely determined by the
timing of transcription during the cell cycle (Smits et al.
2006). Covalent ly l inked cel l wal l protein gene
(MAC_03347) was downregulated in the ΔMaPpt1 strain,
suggesting that MaPpt1 is also involved in fungal cell wall
organization. In summary, these results indicated that the dif-
ferential expression of genes involved in conidiation, cell cy-
cle, cell proliferation, and cell wall organization potentially
contributed to the enhanced formation of microcycle conidia
in the ΔMaPpt1 strain.

Besides increasing the ability of microcycle conidiation,
deletion of MaPpt1 also promoted the ability of the fungus
to counteract UV irradiation which resulted in DNA damage.
A number of repair or tolerant strategies were developed to
counteract the DNA damage caused by UV in cells, such as
photoreactivation, excision repair, and conidial pigmentation
(Sinha and Häder 2002). Previous studies have reported that
PP5 interacts with other proteins and influences cell cycle
after DNA damage (Ali et al. 2004; Zhang et al. 2005; Yong
et al. 2007). In mammalian systems and some lower eukary-
otes including Trypanosoma brucei and Toxocara canis, loss
or reduction of PP5/Ppt1 resulted in decreased ability to re-
spond to DNA damage (Chaudhuri 2001; Ma et al. 2014).
However, our data indicate that in M. acridum, Ppt1 acts as
a negative regulator of DNA damage pathways, as the mutant
strain was more resistant to UV exposure than the wild type
and complementary strains. These results suggest that partic-
ipation of PP5/Ppt1 in this pathway may conserve the out-
come of its activity in DNA damage response has diverged.
FromDGE data, we found that 21 DNA damage repair-related
genes were upregulated inΔMaPpt1. Of these genes, 4 genes
are involved in base excision repair, including the genes for G-
specific adenine glycosylase (Hašplová et al. 2012), DNA-3-
methyladenine glycosylase (Troll et al. 2014), ADP-

ribosyltransferase (Eberle et al. 2015), and Rad7
(Venkannagari et al. 2016). Four genes are related to nucleo-
tide excision repair, including the genes for ATP-dependent
DNA ligase domain protein (Doherty and Wigley 1999),
mating-type switching protein swi10 (Rödel et al. 1999), and
two DNA glycosylases (D’Errico et al. 2017; Lee andWallace
2016). Twomismatch repair genes, encoding proliferating cell
nuclear antigen (Emptage et al. 2008) and replication factor-A
protein 1 (Emptage et al. 2008), are also included. In addition,
the genes for DNA repair protein UVS6, which is known to be
involved in UVB resistance and efficient DNA damage repair
(Schroeder 1975), and DNA polymerase ε, which plays im-
portant roles in DNA damage tolerance repair (Fumasoni et al.
2015), were both upregulated in ΔMaPpt1. Thus, the en-
hanced UV tolerances of ΔMaPpt1 are likely due to upregu-
lation of these DNA damage repair-related genes in M.
acridum.

In summary, our results demonstrated that deletion of
MaPpt1 induced microcycle conidiation and conidia with
higher UV tolerance, providing significant advantages to de-
velop as control agents against insect pests. The deletion of
MaPpt1 increased conidial yield which is of benefit for indus-
trial fermentation of biological control agents. This study pro-
vides new insight into dephosphorylation by the MaPpt1 reg-
ulator on microcycle conidiation and counteracting the DNA
damage caused by UV. However, further work is needed to
elucidate the molecular mechanisms of the process, with the
genetic manipulation of MaPpt1 related to microcycle
conidiation, more UV tolerance, being essential for the utili-
zation of those biological control agents.
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